[拼音]:gaizhouqi hanshu
[英文]:almost periodic function
又称殆周期函式,周期函式的一种推广,具有某种近似周期性的有界连续函式。概周期函式是在研究周期函式某种性质的基础上进一步提出来的。三角多项式以及三角多项式序列的极限都是周期函式。而三角和
(сj为复数,λj为实数)序列的极限却未必是周期函式。但这类极限函式的特征可以用某种近似周期性来刻画。考虑最简单的情形,两个连续周期函式ƒ(x)及g(x)的和函式S(x)=ƒ(x)+g(x),设F为ƒ(x)的周期,G为g(x)的周期。如果F和G是可公度的,即存在正整数n1和n2,使得n1F=n2G,那么S(x)也为一周期函式,而且以n1F=n2G为周期。但当F和G是不可公度时,虽然不存在整数n1和n2,满足
,
但由有理数集的稠密性原理可知:存在正整数n1和n2,使得
|n1F-n2G|<δ,
这里,δ是事先任给的正数。从而,存在数τ满足
|n1F-τ|<δ 及 |n2G-τ|0,存在著正数l(δ),使得在每一个长为l(δ)的区间内至少有一数τ满足上式。这样,由ƒ(x)和g(x)的连续性、周期性以及上述事实便得到:对任给的ε>0,存在著正数l(ε),使得在每一个长为l(ε)的区间内至少有一数τ,满足
│S(x+τ)-S(x)│<ε。
上式虽然并不说明S(x)为周期函式,但它具有近似的周期性。一般来说,可以给出如下的精确描述:设ƒ(x)为定义于实轴上的复值连续函式,如果τ满足
,
就称τ为ƒ(x)的属于ε的平移数。若对任一ε>0,存在l(ε)>0,使得长度为l(ε)的区间内至少包含一个ƒ(x)的属于ε的平移数,则称ƒ(x)为概周期函式。任一周期函式必为概周期函式;由上可知,任意有限个周期函式的和函式也必为概周期函式。因而,复值三角和
必为概周期函式。概周期函式理论中的一个重要结果是:ƒ(x)为概周期函式当且仅当ƒ(x)可以用上述的三角和序列来一致逼近。
更多信息: 担保